Bringing Mobile Learning Back with AI, Context and Expertise

What if mobile learning had the intelligence and context it lacked 25 years ago? This piece revisits the rise and fall of early mobile learning projects and considers how the convergence of artificial intelligence, contextual mobile data and educational expertise could support more responsive and personalised learning today.

Bringing Mobile Learning Back with AI, Context and Expertise

Author: Prof John Traxler, UNESCO Chair, Commonwealth of Learning Chair and Academic Director of the Avallain Lab

St. Gallen, July 28, 2025 – Around 25 years ago, many members of the European edtech research community, myself included, were engaged in projects, pilots and prototypes exploring what was then known as ‘mobile learning’. This roughly and obviously referred to learning with mobile phones, likely 3G, nearing the dawn of the smartphone era. Learners could already access all types of learning available on networked desktops in their colleges and universities, but they were now freed from their desktops. The excitement, however, was around all the additional possibilities. 

One of these was ‘contextual learning,’ meaning learning that responded to the learner’s context. Mobile phones knew where they were, where they had been and what they had been doing1. These devices could capture images, video and sound of their context, including both the user and their surroundings. This meant they could also understand and know their user, the learner. 

So, to provide some examples:

  • Walking around art galleries like the Uffizi and heritage sites like Nottingham Castle, learners with their mobile phones could stop at a painting randomly and receive a range of background information, including audio, video and images. The longer they stayed, the more they would receive. Based on other paintings they had lingered at, they could get suggestions, explanations and perspectives on what else they might like and where else they could go.
  • Augmented reality on mobile phones meant that learners standing in Berlin using their mobile phone as a camera viewfinder could see the Brandenburg Gate, but with the now-gone Berlin Wall interposed perfectly realistically as they walked up to and around it. Similarly, they could see Rembrandt’s house in Amsterdam. Learners could also walk across the English Lake District and see bygone landforms and glaciers, or engage in London murder mysteries, looking at evidence and hearing witnesses at various locations.
  • Recommender systems on mobile phones analysed learners’ behaviours, achievements and locations to suggest the learning activity that would suit them best based on their history and context. These recommendations could be linked to assignments, resources and colleagues on their university LMS, providing guidance and practical advice. For example, in a Canadian project, there are specific applications in tourism.
  • Using a system like Molly Oxford on their mobile phones, learners could be guided to the nearest available loan copy of a library book they wanted. They could also be given suggestions based on public transport, wheelchair accessible footpaths and library opening hours.
  • Trainee professionals, such as physiotherapists or veterinary nurses, in various projects across Yorkshire, could be assessed while carrying out a healthcare procedure in ‘real-life’ practice. Their mobile phones would capture the necessary validation and contextual data to ensure a trustworthy process.
  • Some early experiments, with Bluetooth and other forms of NFC (near-field communication), allowed passers-by or students to pick up comments or images hanging in discrete locations, such as a subway or corridor on a university campus, serving as sign-posting or street art. 

These pilots and projects implemented situated2, authentic3 and personalised4 learning as aspects of contextual learning, and espoused5 the principles of constructivism6 and social constructivism7. This was only possible as far as the contemporary resources and technologies permitted. They did not, however, encourage or allow content to be created, commented on, or contributed to by learners, only consumed by them. Also, they usually only engaged with learners on an individual basis, not supporting interaction or communication among learners, even those learning the same thing, at the same place and at the same time.

So what went wrong? Why aren’t such systems widespread across communities, galleries, cultural spaces, universities and colleges any more? And how have things changed? Could we do better now?

The Downfall of Mobile Learning: What Went Wrong?

Mobile phone ownership was not widespread two decades ago, and popular mobile phones were not as powerful as they are today. The ‘apps economy’8 had not taken off. This meant that projects and pilots had to develop all software systems from scratch and get them to interoperate9. They also had to fund and provide the necessary mobile phones for the few learners involved10

Once the pilot or project and its funding had finished, its ideas and implementation were not scalable or sustainable; they were unaffordable. Pilots and projects were usually conducted within formal educational institutions among their students. Also, evaluation and dissemination focused on technical feasibility, proof-of-concept and theoretical findings. They rarely addressed outcomes that would sway institutional managers and impact institutional performance metrics. As a result, these ideas remained optional margins of institutional activity rather than the regulated business of courses, qualifications, assessments and certificates. Nor was there a business model to support long-term adoption. 

In fairness, we should also factor in the political and economic climate at the end of the 2000s. The ‘subprime mortgage’ crisis11 and the ‘bonfire of the quangos’12 depleted the political goodwill and public finances for speculative development work. Work that had previously and implicitly assumed the ‘diffusion of innovations’13 into mainstream provision. That ‘trickle down’ would take these ideas from pilot project to production line.

The Shift in Mobile Learning: What Changed?

Certainly not the political or economic climate, but mobile phones are now familiar, ubiquitous and powerful, and so is artificial intelligence (AI), also familiar, ubiquitous and powerful. Both of these technologies are outside educational institutions rather than confined within them. 

These earlier pilots and projects were basically ‘dumb’ systems, with no ‘intelligence’, drawing only on information previously loaded into their closed systems. Now, we have ‘intelligence’, we have AI and we have AI chatbots on mobile phones. However, currently, AI lacks context and cannot know or respond to the location, history, activity or behaviour of the learner and their mobile phone. Unfortunately, many current AI applications and chatbots are stateless and do not retain memory across interactions, and this represents a further challenge to any continuity.

The Possibilities of Mobile Learning: Could We Do Better Now?

Today’s network technologies can enable distributed connected contributions and consumption, enabling writing and reading. These might realise more of the possibilities of constructivism and social constructivism. They could enable educational systems to learn about and respond to their individual learners and their environment, connecting groups of learners and showing them how to support each other14

So, is there the possibility of convergence? Is it possible to combine the ‘intelligence’ of AI, the ‘memory’ of databases and the context provided by mobile phones, including both the learner and their environment? Could this be merged and mediated by educational expertise, acting as an interface between the three technologies, filtering, selecting and safeguarding?

What might this look like? We could start by adding ‘intelligence’ and ‘memory’ to our earlier examples.

The Future of Mobile Learning: What Could it Look Like? 

In terms of formal learning, our previous examples of the Uffizi Galleries, the Lake District, the Berlin Wall and Nottingham Castle are easy to extrapolate and imagine. Subject to a mediating educational layer, learners would each be in touch with other learners, helping each other in personalised versions of the same task. They could receive background information, ideas, recommendations, feedback and suggestions, cross-referenced with deadlines, schedules and assignments from their university LMS, all based on the cumulative history of their individual and social interactions and activities. 

When it comes to community learning or visitor attractions, systems could be created that encourage interactive, informal learning. For example, a living local history or 3D community poem spread around in the air, held together by links and folksonomies15, perhaps using tags to connect ideas, a living virtual world overlaying the real one. These systems could also support more prosaic purely educational applications, combining existing literary, artistic or historical sources with personal reactions or recollections.

Technically, this is about accessing the mobile phone’s contextual data, but sometimes other simple mobile data communications, for context. It also requires querying a relational database16 to retrieve history and constraints, and perhaps an institutional LMS, to retrieve assignments, timetables and course notes. AI can then be prompted to bring these together for some educational activity. Certainly, a proof of concept is eminently feasible. The expertise and experience of the three core disciplines are still out there and only need to be connected, tasked and funded.

Conclusions and Concerns

This piece sketches some broad educational possibilities once we enlist AI to support various earlier kinds of contextual mobile learning. Specific implementations and developments must address considerable social, legal, ethical and regulatory concerns and requirements. The earlier generation of projects might have already worked with these, privacy and surveillance being the obvious ones. Still, AI adds an enormous extra dimension to these, and there are other concerns like digital over-saturation, especially of children and vulnerable adults.

Nonetheless, this convergence of AI, contextual mobile data and educational expertise promises a future where learning is not confined to traditional settings but is a fluid, intelligent and deeply embedded aspect of our daily lives, making education more effective, accessible and aligned with individual and societal needs.


  1. There is considerable literature, including:
    Special editions: Research in Learning Technology, Vol. 17, 2009. 
    Review articles: Kukulska-Hulme, A., Sharples, M., Milrad, M., Arnedillo-Sanchez, I. & Vavoula, G. (2009). Innovation in mobile learning: A European perspective. International Journal of Mobile and Blended Learning, 1(1), 13–35.
    Aguayo, C., Cochrane, T. & Narayan, V. (2017). Key themes in mobile learning: Prospects for learner-generated learning through AR and VR. Australasian Journal of Educational Technology, 33(6).
    Edited books: Traxler, J. & Kukulska-Hulme, A. (Eds) (2015), Mobile Learning: The Next Generation, New York: Routledge. (Also available in Arabic, 2019.) 
    More philosophically, Traxler, J. (2011) Context in a Wider Context, Medienpädagogik, Zeitschrift für Theorie und Praxis der Medienbildung. The Special Issue entitled Mobile Learning in Widening Contexts: Concepts and Cases (Eds.) N. Pachler, B. Bachmair & J. Cook, Vol. 19, pp. 1-16. ↩︎
  2. Meaning, ‘real-life’ settings. ↩︎
  3. Meaning, ‘real-life’ tasks. ↩︎
  4. Meaning, learning tailored to each separate individual learner.  ↩︎
  5. Educational technology researchers distinguish between what teachers say, what they ‘espouse’, and what they actually do, what they ‘enact’, usually something far more conservative or traditional. ↩︎
  6. An educational philosophy based on learners actively building their knowledge through experiences and interactions. ↩︎
  7. A variant of constructivism that believes that learning is created through social interactions and through collaboration with others. For an excellent summary of both, see: https://www.simplypsychology.org/constructivism.html  ↩︎
  8. For an explanation, see: https://smartasset.com/investing/the-economics-of-mobile-apps ↩︎
  9. A common term among computing professionals, referring to whether or not different systems, such as hardware, software, applications and peripherals, will actually work together, or whether it would be more like trying to fit a UK plug into an EU socket.  ↩︎
  10. A more detailed account is available at: https://medium.com/@Jisc/what-killed-the-mobile-learning-dream-8c97cf66dd3d ↩︎
  11. For an explanation, see:https://en.wikipedia.org/wiki/Subprime_mortgage_crisis ↩︎
  12. For an explanation, see: 2010 UK quango reforms – Wikipedia, which impacted Becta, the LSDA, Jisc and other edtech supporters.  ↩︎
  13. For an explanation, see: https://en.wikipedia.org/wiki/Diffusion_of_innovations ↩︎
  14. The proximity of physical or geographical context that the location awareness of neighbouring mobile phones could extend to embrace social proximity, meaning learners who are socially connected, or educational proximity, meaning learners working on similar tasks. The latter idea connects to the notions of ‘scaffolding’, ‘the more knowledgeable other’ and ‘the zone of proximal development’ of the theorist Vygotsky. For more, see: https://en.wikipedia.org/wiki/Zone_of_proximal_development ↩︎
  15. Databases conventionally have a fixed structure, for example, personal details based on forename, surname, house name, street name and so on, with no choice. Folksonomies, by contrast, are defined by the user, often on the fly. For example, tagging with labels such as ‘people I like’, ‘people nearby’, ‘people with a car’. Diigo, a social bookmarking service, uses tagging to implement a folksonomy. ↩︎
  16. Relational databases, unlike ‘flat’ databases based solely on a file, capture relationships, such as a teacher working in a college or a student enrolling in a course, and include all the various individual teachers, courses, students and colleges. ↩︎

About Avallain

At Avallain, we are on a mission to reshape the future of education through technology. We create customisable digital education solutions that empower educators and engage learners around the world. With a focus on accessibility and user-centred design, powered by AI and cutting-edge technology, we strive to make education engaging, effective and inclusive.

Find out more at avallain.com

About TeacherMatic

TeacherMatic, a part of the Avallain Group since 2024, is a ready-to-go AI toolkit for teachers that saves hours of lesson preparation by using scores of AI generators to create flexible lesson plans, worksheets, quizzes and more.

Find out more at teachermatic.com

_

Contact:

Daniel Seuling

VP Client Relations & Marketing

dseuling@avallain.com

Create and Quiz: CEFR-Aligned AI Tools for Language Teaching

How can AI help language teachers save time, tailor materials and support learners at every level? In our latest Language Teaching Takeoff Webinar, we explored how two CEFR-aligned generators in TeacherMatic, Create a Text and Multiple Choice Questions, make creating relevant input and fast-track assessment easy. 

Create and Quiz: CEFR-Aligned AI Tools for Language Teaching

London, July 2025 – In the latest chapter of the Language Teaching Takeoff Webinar Series, ‘Generate, Engage and Assess: Create Custom Texts and Multiple Choice Quizzes’, award-winning educator and edtech consultant Nik Peachey guided participants through a live demo of two key generators particularly beneficial for language education: Create a Text and Multiple Choice Questions

Moderated by Giada Brisotto, Senior Marketing and Sales Operations Manager at Avallain, the session showed how language teachers can use TeacherMatic to generate original CEFR-level texts and instantly assess learner understanding. The examples explored during the session demonstrated how these tools support practical teaching needs without requiring any prompt engineering or AI expertise, all within an approach that prioritises ethics and safety.

Exploring the Value of Teacher-Controlled Content Generation

Nik began by highlighting how TeacherMatic differs from generic content tools. Built around classroom needs, the platform offers dozens of AI generators that help teachers plan, adapt and create lesson content. For language educators, CEFR alignment across tools ensures that outputs are suitable for specific levels, skills and teaching goals. 

Customised Texts for Every Level

With the Create a Text generator, teachers can define the topic, CEFR level, grammar focus and text type before generating a classroom-ready passage. Nik demonstrated how this can be used to create a short story, a dialogue or an informational text, depending on the teaching context. Teachers can also select the vocabulary focus or set a maximum word count to keep the text suitable for the target group.

The generator was created to facilitate differentiation, simplifying the process of adapting the same theme across various levels. It is beneficial for preparing writing models, reading texts, speaking prompts or listening scripts. If the output is not quite right, the teacher can instantly regenerate until the tone, length, or complexity matches their needs, with a simple click of the ‘Refine’ button, within the generator’s interface.

Instant Formative Assessment

The Multiple Choice Questions generator allows teachers to create CEFR-aligned quizzes using any text as input. This can include text generated within TeacherMatic, the teacher’s own materials, or content sourced from an external link. Nik illustrated how this tool can be used to generate quick comprehension checks, grammar quizzes or vocabulary reviews in just a few clicks. Once created, quizzes can be exported in multiple formats, including Kahoot, Excel and Word, or saved directly to Google Drive, giving educators flexible options for classroom delivery or sharing with learners.

Built for the Language Classroom

Both generators are part of the Language Teaching Edition of TeacherMatic, which provides tools specifically developed for CEFR-aligned teaching. These include level checkers, adaptation tools and generators for targeted vocabulary, grammar, speaking and writing tasks. The session reinforced how each feature supports everyday classroom needs, from content creation to assessment.

Reflecting on Impact

Participants left the session with practical ideas for incorporating these two featured generators in their daily work. Key benefits discussed included:

  • Creating original texts without having to search or adapt existing ones.
  • Quickly generating CEFR-aligned multiple-choice quizzes to check understanding.
  • Adapting the same theme across different CEFR levels.
  • Saving time while maintaining control over content quality.

By combining flexibility with pedagogical structure, the Create a Text and Multiple Choice Questions generators offer a practical way to generate, engage and assess across the language learning journey.

Explore the Language Teaching Edition of TeacherMatic

Whether teaching A1 learners or guiding advanced students through C1 material, the Language Teaching Edition of TeacherMatic helps you do it faster, better and more flexibly. 

Next in the Webinar Series

After a short summer pause, the Language Teaching Takeoff Webinar Series returns in September. Join us for the next session:

Date: Thursday, 11th September

Time: 12:00 – 12:30 BST | 13:00 – 13:30 CEST

The topic will be announced soon and, as always, will focus on practical ways that AI can support language educators with CEFR-aligned tools. Register early to secure your spot.


About Avallain

At Avallain, we are on a mission to reshape the future of education through technology. We create customisable digital education solutions that empower educators and engage learners around the world. With a focus on accessibility and user-centred design, powered by AI and cutting-edge technology, we strive to make education engaging, effective and inclusive.

Find out more at avallain.com

About TeacherMatic

TeacherMatic, a part of the Avallain Group since 2024, is a ready-to-go AI toolkit for teachers that saves hours of lesson preparation by using scores of AI generators to create flexible lesson plans, worksheets, quizzes and more.

Find out more at teachermatic.com

Contact:

Daniel Seuling

VP Client Relations & Marketing

dseuling@avallain.com 

Breaking Barriers Teams Up with Avallain and TeacherMatic to Support Volunteer Teachers and Refugees 

The specialist refugee employment charity, Breaking Barriers, is expanding access to English learning for refugees in the UK by equipping its volunteer teachers with free access to TeacherMatic, Avallain’s AI toolkit for educators.

Breaking Barriers Teams Up with Avallain and TeacherMatic to Support Volunteer Teachers and Refugees 

London, July 2025Breaking Barriers, a UK-based charity dedicated to helping refugees access meaningful employment and education, has partnered with Avallain and TeacherMatic to enhance its English language support. 

As part of this collaboration, 30 volunteer teachers working with refugee learners will receive free access to TeacherMatic, including all AI generators and features designed specifically for language teaching.

Supporting Flexible, Learner-Centred Education

Breaking Barriers works with hundreds of refugees each year, many of whom face significant obstacles to attending in-person classes. Their network of volunteer teachers provides flexible English tuition tailored to each individual’s learning needs and life circumstances.

‘Attending mainstream in-person classes just isn’t possible for many of the people we support, due to their unique circumstances,’ says Ilaria Tarulli, Head of Language Programme of Breaking Barriers. ‘That is why our amazing community of volunteer, qualified teachers, who so generously give their time to offer flexible online tuition, is absolutely essential to what we do. TeacherMatic has become an invaluable tool in helping our tutors build tailored and effective English learning journeys for our students, truly supporting them to thrive and providing access to language tuition for those who might not otherwise have the opportunity.’

‘We are so grateful to Avallain for donating access to their platform and for choosing to start this journey with us. We can’t wait to see what we can achieve together – and what our clients go on to accomplish – through this exciting and meaningful collaboration!’

AI That Supports High-Quality, Ethical Language Teaching

TeacherMatic is an award-winning AI toolkit developed to unlock educators’ full potential while keeping ethics and learner safety at its core. While it supports teachers across subjects, its language teaching edition is valuable to language teachers of all kinds, including those working with refugee learners. It offers dozens of CEFR-aligned AI generators that help teachers quickly create accurate and engaging materials. 

From lesson planning to adapting content for specific levels and target audiences to generating constructive feedback and more, educators can accelerate their workflow while maintaining the highest quality. In a context where time, flexibility and individualisation are critical, these features make a meaningful difference for both learners and teachers.

‘It means a great deal to us that TeacherMatic is being used to support such an important mission,’ says Peter Kilcoyne, Managing Director of TeacherMatic. ‘Knowing that our AI toolkit is helping dedicated volunteers deliver high-quality, personalised language teaching reinforces our belief that AI should support, not replace, the work of great teachers and help unlock their full potential.’

Technology That Amplifies Impact

This partnership builds on Breaking Barriers’ commitment to learner-focused education and is supported by Avallain’s belief in ethical, human-centred technology. TeacherMatic helps reduce teachers’ preparation burden while enabling more personalised and targeted learning materials, a key factor when supporting individuals working toward integration, independence and long-term opportunity.

‘This collaboration with Breaking Barriers is a clear expression of what drives us,’ says Ursula Suter, Executive Chairwoman and Co-founder of Avallain. ‘We believe that technology and AI must always serve a purpose. This initiative reflects the power of responsibly developed edtech solutions to support education for all, especially those who face the greatest barriers.’


About Breaking Barriers

Breaking Barriers helps refugees in the UK access employment and education opportunities through personalised support, English language tuition and sector-specific training. 

Learn more at breaking-barriers.co.uk.

About Avallain

At Avallain, we are on a mission to reshape the future of education through technology. We create customisable digital education solutions that empower educators and engage learners around the world. With a focus on accessibility and user-centred design, powered by AI and cutting-edge technology, we strive to make education engaging, effective and inclusive.

Find out more at avallain.com

About TeacherMatic

TeacherMatic, a part of the Avallain Group since 2024, is a ready-to-go AI toolkit for teachers that saves hours of lesson preparation by using scores of AI generators to create flexible lesson plans, worksheets, quizzes and more.

Find out more at teachermatic.com

Contact:

Daniel Seuling

VP Client Relations & Marketing

dseuling@avallain.com

Accessible by Design: How the Avallain Author Training and Certification’s Accessibility Module Prepares Content Creators for the EAA Era

The Avallain Author Training and Certification Programme now contains a dedicated accessibility module, thereby extending its coverage to accessibility features within Avallain Author. It equips content creators with the knowledge to design truly inclusive learning materials for all students.

Accessible by Design: How the Avallain Author Training and Certification’s Accessibility Module Prepares Content Creators for the EAA Era

St. Gallen, July 2025 – The Avallain Author Training & Certification Programme is designed to equip publishing professionals, content service providers and individual authors with the skills to make the most of Avallain Author. A key component of this programme is the Accessibility module, a practical course that supports the creation of inclusive digital content aligned with international standards.

As the European Accessibility Act (EAA) comes into effect across the EU, education providers are navigating new compliance requirements and a broader shift toward equitable learning. This module enables content creators to respond confidently, building accessible materials that meet legal standards and support meaningful participation for all learners. It forms part of Avallain’s ongoing commitment to accessibility in digital education, grounded in our Inclusive Design Approach, as detailed in our article on how we design for accessibility.

Applying Built-In Accessibility with Confidence

The module guides participants through Avallain Author’s accessibility features and how to implement them in day-to-day workflows. These include:

  • Keyboard and screen reader compatibility, allowing navigation without a mouse.
  • AI-generated alt text for all images and illustrations.
  • AI-powered subtitles and transcripts for multimedia content.
  • Customisable layouts, including high contrast options and scalable fonts.
  • Accessibility controls flag non-compliant assets during content development.

By the end of the module, certified users can effectively apply these features and ensure that every piece of content aligns with WCAG 2.2 AA and is ready for any compliance audit.

Mercury Design Pack: Ensuring Accessible Interactivity

Accessibility extends beyond layout and media to how learners interact with digital content. The Mercury Design Pack, which underpins Avallain Author Activity Types, plays a central role in ensuring that interactivity is inclusive by design.

The Accessibility module of the Avallain Author Training & Certification Programme teaches participants how to effectively use components within the Mercury Design Pack to deliver accessible, standards-aligned learning activities across a wide range of use cases.

Its accessibility-focused features include:

  • WCAG 2.2 AA compliance by default, covering everything from contrast ratios to focus indicators.
  • Keyboard-accessible components, enabling full navigation across interactive elements without a mouse.
  • Readable, scalable typography, optimised for users with dyslexia and other reading differences.
  • Consistent UX behaviours, reducing cognitive load and helping learners feel confident in navigating content.

Content creators can focus on the learning experience rather than retrofitting or troubleshooting because dozens of Activity Types built with Mercury have already been independently audited and validated for accessibility. 

By mastering how to implement accessibility features in Mercury through the training module, authors, publishers and content service providers can deliver engaging and compliant interactive digital learning without extra production overhead.

Supporting Scalable, Inclusive Content Creation

The Accessibility module is designed to support content professionals in real-world production contexts:

  • Publishers can streamline accessibility across their catalogues and meet audit requirements efficiently.
  • Content service providers and agencies can deliver high-standard learning materials for clients with diverse compliance needs.
  • Individual authors gain structured guidance and official certification that demonstrates expertise in inclusive content development.

This module allows teams and individuals alike to integrate accessibility from the start, reducing rework, improving quality and ensuring every learner is supported.

AI for Accessibility: Research-Led Design

The module also reflects ongoing developments led by the Avallain Lab, which explores how AI can actively support inclusion in content creation. It is further aligned with Avallain Intelligence, our strategy for the ethical and responsible integration of AI in education.

This work includes:

  • Evaluating and refining features in collaboration with accessibility experts such as the Digital Accessibility Centre.
  • Integrating accessibility standards into development from the outset.
  • Enhancing authoring workflows with AI tools that generate alt text, subtitles and transcripts for multimedia assets.

This approach makes it easier for content creators to deliver compliant, high-quality learning materials with Avallain Author without needing external tools or specialised knowledge.

Responding to the EAA with Practical Tools and Training

The EAA sets a new bar for digital inclusion, and with it, a need for clear, actionable support for those creating educational content. The Accessibility module complements the Avallain Author Training and Certification Programme with resources to prepare for compliance while improving learner access and equity.

The module helps content creators to understand how to simplify accessibility work through guided training, built-in tools and reusable, validated components.

Join a Growing Community of Certified Teams and Individuals

Explore the Avallain Author Training and Certification Programme and join publishers, content service agencies and individual professionals who have already gained certification in using Avallain Author to create powerful, professional and accessible digital learning content.


About Avallain

At Avallain, we are on a mission to reshape the future of education through technology. We create customisable digital education solutions that empower educators and engage learners around the world. With a focus on accessibility and user-centred design, powered by AI and cutting-edge technology, we strive to make education engaging, effective and inclusive.

Find out more at avallain.com

_

Contact:

Daniel Seuling

VP Client Relations & Marketing

dseuling@avallain.com